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Abstract. The Hamiltonian reduction of classical SU(2) Yang–Mills field theory to the equivalent uncon-
strained theory of gauge invariant local dynamical variables is generalized to the case of nonvanishing
θ-angle. It is shown that for any θ-angle the elimination of the pure gauge degrees of freedom leads to a
corresponding unconstrained non-local theory of self-interacting second rank symmetric tensor fields, and
that the obtained classical unconstrained gluodynamics with different θ-angles are canonically equivalent
as on the original constrained level.

1 Introduction

The gauge and Poincaré invariant action of Yang–Mills
theory depends on two parameters, the coupling constant
g and the so-called θ-angle, as coefficients in front of the
CP even part S(+),

S(+) =
1

2g2

∫
d4xtrFµνF

µν , (1)

and the CP odd part S(−),

S(−) = − θ

16π2

∫
d4xtr∗FµνF

µν , (2)

respectively. At the classical level neither the value of the
coupling constant nor that of the θ-angle effect the observ-
ables, because the complete information for the descrip-
tion of the classical behaviour of the gauge fields is coded
entirely in the extremum of the action. When all compo-
nents of the gauge potential entering the action are varied
as independent variables the topological charge density
term Q(x) = −(1/16π2)tr∗FµνF

µν can be discarded as a
total divergence,

Q(x) = ∂µK
µ, (3)

with the Chern–Simons current Kµ [1]

Kµ = − 1
16π2 ε

µαβγtr
(
FαβAγ − 2

3
AαAβAγ

)
, (4)

and thus the extremal curves are independent of both the
coupling constant and the θ-angle.

Passing to the quantum theory it is generally believed
[2–4] that the physical observables become θ-dependent.
Although in perturbative calculations all diagrams with
vertex Q(x) vanish, non-perturbative phenomena such as

tunneling between the above topologically distinct clas-
sical vacua, labeled by the integer value of the winding
number functional

W [A] =
∫

d3xK0, (5)

leads to the appearance of θ-vacua. Configurations with
different winding numbers are related to each other by
large gauge transformations reflecting the fact that the
topological current Kµ is not gauge invariant.

We therefore ask at this place the question whether it
is possible to express the topological term in the classical
action as a total divergence of a gauge invariant current us-
ing the unconstrained formulation of gauge theories [5–20].
In the hope to obtain such a representation of the topolog-
ical term we would like to generalize in the present note
the Hamiltonian reduction of classical SU(2) Yang–Mills
field theory given in [18] to arbitrary θ-angle by including
the CP odd part (2) of the action. We shall reformulate
the original degenerate Yang–Mills theory as an uncon-
strained non-local theory of self-interacting second rank
symmetric tensor fields.

Carrying out such a reduction in the presence of a total
divergence term in the action one can meet the so-called
“divergence problem” specific for the field theory with con-
straints which has no analog for finite-dimensional me-
chanical systems. This problem has first been formulated
explicitly in the context of the canonical reduction of gen-
eral relativity1. Forty years ago Arnowitt, Deser and Mis-

1 Presumably, the idea of the importance of the careful con-
sideration of terms which are total spatial divergences goes
back to Dirac in 1959 when he constructed the reduced Hamil-
tonian in general relativity as a certain surface integral at spa-
tial infinity [21]
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ner [22] gave a clear and vivid formulation of the phe-
nomenon: “a term which in the original Lagrangian (or
Hamiltonian) is a pure divergence, may cease to be a di-
vergence upon elimination of the redundant variables and
hence may contribute to the equations of motion obtained
from the reduced Lagrangian (Hamiltonian)”. A simple ad
hoc example from [22] explains the idea of this statement.
Consider a theory where among the variables there is a
redundant variable satisfying the constraint

∇2Φ = χ2. (6)

A term ∇2Φ added to the degenerate Lagrangian being
a divergence has no influence on the classical equation of
motion, while after projection onto the constraint shell it
appears as χ2 and would contribute to the equations of
motion.

We shall demonstrate that the Hamiltonian reduction
of SU(2) Yang–Mills gauge theory is free of the above
mentioned divergence problem due to the Bianchi iden-
tities. Equivalence of constrained and unconstrained for-
mulations of gauge theories on the classical level requires
the demonstration of the agreement between reduced and
original non-Abelian Lagrangian equations of motion. We
shall explicitly construct the canonical transformation,
well defined on the reduced phase space, that eliminates
the θ-dependence of the classical equations of motion for
the unconstrained variables2.

2 Theta independence
on the constrained level

Let us first review the case of the original constrained
theory and demonstrate that under the special boundary
conditions for the fields at spatial infinity (see (15) below)
there exists a canonical transformation which completely
eliminates the θ-dependence from the classical degenerate
theory.

2.1 Hamiltonian formulation of the constrained theory

Both parts of the action S = S(+) + S(−) are invariant
under the local gauge transformations

Aµ → A′
µ = U−1(x) (Aµ − ∂µ)U(x), (7)

with an arbitrary space-time depended element U(x) of
the gauge group. This means that the Lagrangian theory
is degenerate and the standard Hamiltonian description
needs to be generalized. We shall follow the Dirac gener-
alized Hamiltonian approach [24,25].

Inclusion of the CP odd part of the action S(−) leads
to the modification of the canonical momenta

Πa =
∂L

∂Ȧa0
= 0, (8)

Πai =
∂L

∂Ȧai

=
1
g2

(
Ȧai − (Di(A))acAc0

)
+
θ

8π2Bai, (9)

2 A similar construction for gravity has been done recently
in [23]

where the covariant derivative Di reads

(Di(A))mn = δmn∂i + (Jc)mnAci, (10)

with the 3 × 3 matrix generators of the SO(3) group
(Js)mn := εmsn, and non-Abelian magnetic fields

Bai = εijk

(
∂jAak +

1
2
εabcAbjAck

)
(11)

have been introduced. Independently of this modification
the phase space spanned by the variables (Aa0, Πa) and
(Aai, Πai) is restricted by the three primary constraints
Πa(x) = 0.

The canonical Hamiltonian is

HC =
∫

d3x

[
g2

2

(
Πai − θ

8π2Bai

)2

+
1

2g2
B2

ai +Πai (DiA0)a

]
, (12)

where we have used that the topological charge density
Q(x) can be rewritten in terms of the non-Abelian electric
and magnetic fields as

Q =
1

8π2F
a
0iBai. (13)

The standard way in the Hamiltonian approach to pro-
ceed further, is to perform a partial integration in the last
term in expression (12) for the canonical Hamiltonian∫

VR

d3xΠai (DiA0)a = −
∫

VR

d3xAa0 (DiΠi)a

+
∮

ΣR

d2σiAa0Πai, (14)

where according to the Gauss theorem the surface integral
is over the two-dimensional closed surface covering the
three-dimensional volume VR (for simplicity we assume
that it is a ball with radius R). Supposing that

lim
R→∞

∮
ΣR

d2σiAa0Πai = 0, (15)

we obtain the non-Abelian Gauss law constraint

(Di)acΠic = 0, (16)

as the condition to maintain the primary constraintsΠa =
0 during the evolution. According to the Dirac prescrip-
tion the generator of the time translation is the total
Hamiltonian

HT =
∫

d3x

[
g2

2

(
Πai − θ

8π2Bai

)2

+
1

2g2
B2

ai

− Aa0DiΠai + λaΠa

]
, (17)

depending on three arbitrary functions λa(x), and the
Poisson brackets have a canonical structure

{Aai(x, t), Πbj(y, t)} = δabδijδ
3(x − y), (18)

{Aa0(x, t), Πb(y, t)} = δabδ
3(x − y). (19)



A.M. Khvedelidze et al.: On unconstrained SU(2) gluodynamics with theta angle 139

2.2 Canonical equivalence of constrained theories
with different theta angles

Based on the representation (17) for the total Hamilto-
nian one can immediately verify the equivalence of classi-
cal theories with different values of the parameter θ. To
convince ourselves let us perform the transformation to
the new coordinates Aai and Ebj :

Aai(x) → Aai(x) = Aai(x), (20)

Πbj(x) → Ebj = Πbj(x) − θ

8π2Bbj(x). (21)

One can easily check that this transformation is canonical;
the new coordinates Aai and Eai satisfy the same canoni-
cal Poisson brackets relations (18) as the original one. And
noticing that by virtue of the Bianchi identity

εµνλρDνFλρ = 0, (22)

one can conclude that the θ-dependence completely dis-
appears from the Hamiltonian (17).

Note that the canonical transformation (21) can be
represented in the form

Eai = Πai − θ δ

δAai
W [A], (23)

where W [A] denotes the winding number functional (5).

3 Theta independence
on the unconstrained level

We shall now derive the unconstrained version of Yang–
Mills theory with θ-angle and then give the analog of the
transformation (20) and (21) after projection to the re-
duced phase space, thus checking the consistency of the
unconstrained canonical formulation of Yang–Mills the-
ory.

3.1 Hamiltonian formulation
of the unconstrained theory

For the reduction of SU(2) Yang–Mills theory we shall
follow the method developed in [18] for the CP even part
of the action. To reduce the CP odd part one can proceed
similarly.

Let us therefore perform the following point transfor-
mation to the new set of Lagrangian coordinates qj (j =
1, 2, 3) and the six elements Sik = Ski (i, k = 1, 2, 3) of
the positive definite symmetric 3 × 3 matrix S:

Aai (q, S) = Oak (q)Ski − 1
2
εabc

(
O (q) ∂iO

T (q)
)
bc
, (24)

where O(q) is an orthogonal 3 × 3 matrix parameterized
by the three fields qi.

The first term in (24) corresponds to the so-called po-
lar decomposition for arbitrary quadratic matrices. The

inclusion of the additional second term is motivated by
the inhomogeneity of the gauge transformation (7)3. The
transformation (24) induces a point canonical transfor-
mation linear in the new conjugated momenta Pik and pi.
Using the corresponding generating functional depending
on the old momenta and the new coordinates,

F3 [Π; q, S] =
∫

d3zΠai(z)Aai (q(z), S(z)) , (25)

one can obtain the transformation to new canonical mo-
menta pi and Pik

pj(x) =
δF3

δqj(x)
= −Ωjr

(
Di(Q)STΠ

)
ri
, (26)

Pik(x) =
δF3

δSik(x)
=

1
2

(
ΠTO +OTΠ

)
ik
. (27)

Here

Ωji(q) := −1
2

Tr
(
OT (q)

∂O (q)
∂qj

Ji

)
. (28)

The symplectic structure of the new variables is en-
coded in the fundamental Poisson brackets4

{Sij(x), Pkl(y)} =
1
2

(δikδjl + δilδjk) δ(3)(x− y). (29)

A straightforward calculation based on the linear rela-
tions (26) and (27) between the old and the new momenta
leads to the following expression for old momenta Πai in
terms of the new canonical variables:

Πai = Oak (q) [P ki + εkisPs], (30)

where the vector Ps is a solution to the system of first
order partial differential equations

∗Dks(S)Ps = sk(x) +Ω−1
kl pl. (31)

In (31) the ∗D denotes the matrix operator

∗Dik(S) = −(Dm(S)Jm)ki, (32)

and one can verify that the vector

sk(x) = (Di(S))klPil (33)

coincides up to a divergence term with the spin density
part of the Noetherian angular momentum calculated in
terms of the new variables and projected onto the con-
straint shell. Using the representations (24) and (30) one
can easily convince oneself that the new variables S and P
make no contribution to the Gauss law constraints (16):

Oas(q)Ω−1
sj(q)pj = 0. (34)

3 One can treat (24) as a gauge transformation to the new
field configuration S(x) which satisfy the so-called symmetric
gauge condition εabcSbc = 0. The uniqueness and regularity of
the transformation (24) depends on the boundary conditions
imposed

4 These new brackets take into account the symmetry con-
straints Sij = Sji and Pkl = Plk and rigorously speaking are
Dirac brackets
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Here and in (31) we assume that the matrix Ω is invertible
and thus the equivalent set of Abelian constraints is

pa = 0. (35)

The Abelian form of the Gauss law constraints is the main
advantage of the new variables. In terms of these coordi-
nates the projection to the constraints shell is achieved by
vanishing values for the momenta pa in all expressions.

The reduced Hamiltonian is defined as the projection
of the total Hamiltonian to the constraint shell pa = 0 and
Πa = 0. In terms of the unconstrained canonical variables
S and P it reads

H =
∫

d3x

[
g2

2

(
Pai − θ

8π2B(ai)

)2

+ g2
(
Pa − θ

8π2Ba

)2

+
1

2g2
B2

ai

]
. (36)

Here B(ai) and Ba denote the symmetric tensor B(ai) =
(Bai+Bia)/2 and vector Ba = εabcBbc/2 constructed from
the chromomagnetic field

Bsk = εklm

(
∂lSsm +

1
2
εsbcSblScm

)
. (37)

The vector Pa representing the non-local term in the
Hamiltonian (36) is given as the solution to the system
of differential equations

∗Dks(S)Ps = sk(x), (38)

which is the projection of (31) to the constraint surface
pa = 0.

3.2 Canonical equivalence of the unconstrained theory
with different theta angles

For the original degenerate action in terms of the Aµ fields
the equivalence of classical theories with arbitrary value
of θ-angle has been reviewed in Sect. 2. Let us now ex-
amine the same problem for the derived unconstrained
theory considering the analog of the canonical transfor-
mation (20) and (21) after projection onto the constraint
surface

Sai(x) → Sai(x) = Sai(x), (39)

Pbj(x) → Ebj(x) = Pbj(x) − θ

8π2B(bj)(x). (40)

First of all one can easily check that this transformation to
the new variables Sai and Ebj is canonical with respect to
the Dirac brackets (29). The Hamiltonian (36) in terms of
the new variables Sai and Ebj is therefore θ-independent.
It looks like

H =
∫

d3x

[
g2

2
E2

ai + g2E2
a +

1
2g2

B2
ai

]
, (41)

where Ea is a solution to (38) with the replacement Pai →
Eai. This follows from the observation that if Pa is a so-
lution to (38) then the expression

Ea = Pa − θ

8π2Ba (42)

is a solution to the same equation with the replacement
Pai → Eai. This is indeed valid because the Bai field sat-
isfies the identity

∗Dks(S)Bs = (Di(S))klB(li). (43)

Equation (43) is the Bianchi identity (Di)abBbi = 0 rewrit-
ten in terms of the symmetric B(ai) and antisymmetric Ba

parts of the chromomagnetic field strength.
The reduced form of the generating functional (5) cor-

responding to the transformation (40) is the same func-
tional W evaluated for the symmetric tensor Sik. One can
convince oneself that the symmetric part of the magnetic
field B(ij)(S) can be written as the functional derivative
of this functional W [S]:

δ

δSij(x)
W [S] =

1
8π2B(ij)(x), (44)

and thus the canonical transformation that eliminates the
θ-dependence from the Hamiltonian can be represented in
the same form as (23) with the nine gauge fields A replaced
by the six unconstrained fields Sik(x).

4 Concluding remarks

We have explored the question of the θ-independence of
classical unconstrained SU(2) gluodynamics in order to
build the basis for passing to the quantum level. We have
shown that the exact projection of SU(2) gluodynamics to
the reduced phase space leads to an unconstrained system
whose classical equations of motion are consistent with
the original degenerate theory in the sense that they are
θ-independent. The crucial point is that the fulfillment of
this condition is due to properly taking into account the
Bianchi identity for the magnetic field. As a consequence
of the independence of the classical equations of motion of
the gauge invariant local fields, the parity odd term in the
Yang–Mills action is a total divergence of some gauge in-
variant current, in contrast to the original unconstrained
theory, where it was the total divergence of the gauge vari-
ant Chern–Simons current Kµ. The explicit construction
of the gauge invariant current in the unconstrained theory
remains a topic for further investigation. Furthermore, to
deal practically with such a complicated non-local Hamil-
tonian as (36) one would have to use some approximation,
because the exact solution to (38) is unknown. Implement-
ing one or another approximate solution it is desirable to
be consistent with the θ-independence of classical theory.
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